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ABSTRACT

The neuroprosthetic interface must infer an intended movement
from the neural activity that would accompany it in healthy indi-
viduals. We show that an optimal estimator for a controlled sys-
tem such as that responsible for human movements jointly esti-
mates the goal and the trajectory of point-to-point movements. We
demonstrate that this paradigm can achieve orders of magnitude of
increased accuracy in regimes in which the interface has low SNR.
With high SNR, our technique proves reliably more accurate than
a typical approach which ignores the controlled nature of the sys-
tem under observation. Furthermore, we show that even when the
system violates the model assumptions of feed-forward linear con-
trol with additive noise, system performance remains appreciably
better than the alternative.

1. INTRODUCTION

In the past decade there has been a dramatic rise in the inter-
est given to the problem of neuroprosthetics. For the patient
with a neurodegenerative disease, spinal cord injury, or per-
haps even a missing limb, such a device would bypass the
missing or damaged neural circuitry that normally transmits
control signals from the cortex to the limbs. Ideally, the
neuroprosthetic would decipher cortical neural activity so
seamlessly that patients would be able to generate natural
patterns of activity and have them correspond to natural-
seeming movements. Unfortunately, though micromachin-
ing techniques have led to arrays of more than 100 elec-
trodes, one significant roadblock is the limited quantity of
neural information, and its degradation over time. Thus, we
would like to maximize our ability to estimate the patient’s
intended movements given limited neural information.

For the class of human movement we consider of pri-
mary importance — point-to-point reaches — an optimal de-
coder will not only estimate the trajectory of the movement,
but rather jointly estimate the trajectory and the target. We
have previously shown that this approach leads to signifi-
cant performance increases [1], here, we will demonstrate
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the optimality of the technique when certain assumptions
are met.

Recent analyses of human movement suggest that the
human motor control system may behave as an optimal con-
troller [2]. Thus, one can approach the neuroprosthetic prob-
lem as an attempt to estimate the trajectory of a controlled
dynamic system. Because this general problem appears novel,
and may be of interest to a wider community, we will make
a generic presentation of the approach, and then follow it
with results from a simulation particular to the neuropros-
thetic problem.

2. OPTIMAL ESTIMATION

We seek to estimate the trajectory of a system with con-
trolled dynamics. This requires two models, a model of the
system being tracked, and a model of the observation pro-
cess. In general, these can be written as

X1 = f(Xp, ug, Wi,

Vi = g (X, Vi), Controlled
N . System

u, = Ly (Xx) = Li (i, Xn-1)

zi = h (X, up, wg) , Observation

where x;, is the observed system’s state, y represents the
system’s internal observations of itself, z, is the signal re-
ceived by the external observer, wg, v and wy, are short-
hand for stochastic processes, and uy, represents the control
the system exerts on itself in order to minimize some cost
function. Our problem, then, is to estimate the density

Pr(Xk|ZO7"'7Zk)' (1)

We now proceed to demonstrate that in the case of linear
dynamics with Gaussian noise and feed-forward control, if
the cost function minimized by the controller is quadratic
in the target location, the mean of this density has a simple
solution which involves joint estimation not only of the state
X, but also the target state.
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2.1. Simplified Model

We make the assumption that system has linear dynamics:

Xp4+1 = Axy + Bug + Cwy, and
yr = Gx + Dvy,

where wy, and v, ~ N (0,1).

We are interested in point-to-point movements, in which
the system seeks to achieve a final state which is non-zero
only in the position term. Thus, let us expand the state vec-
tor to include this desired position.

Xk
X =
P
where p is the the target location. We can then express the

cost function which is minimized by the controller in terms
of this expanded state:

f
C= X?Qfo + ZugRuk
k=0
1 0 -1 ) . .
where QQ = [ (1) VOV (11} and W is a diagonal matrix rep-

resenting the relative importance of zero final values for the
non-positional terms of the state vector. The system dynam-
ics in terms of the expanded state are

Xpt1 = Ax; + Bug + Cwy 2)
vir = Gxi + Dvy 3)

where &= [49].B = [B].€ = [§]. and G = [§].

We recognize this as the common linear, quadratic, Gaus-
sian (LQG) control problem. Its solution has the character-
istic that at any time the optimal control can be written as a
linear feedback mechanism:

U = Lk}‘:’\'—k y (4)

where x;, is the system’s current estimate of its state, given
observations y.x, and Ly, is a matrix sequence that can be
pre-calculated. In general the values of Lj will depend on
p; we make the assumption that for small variations of the
target location, the same control sequence is used.

2.2. Feed-forward Control

If there is no feedback mechanism within the system, i.e.,
G = 0, the optimal controller may still be written as above,
with the following simplification of the state estimation

ﬁﬁk—i—l = /Afik + ]Bllk-. (5)

Using (4),
k
Xpt1 = H (A + BL,,) xo (6)
m=0
= Yk41Xo0. (7

Let us assume that the initial state of the system is zero.
Then, the controller can be rewritten as a linear function of
the current state.

0

ug = LY
k kLEk |:p]
= LkTgxk

where Y = [ -0 1] oY and “o” denotes the Hadamard
(or element-wise) product.
Thus, the system dynamics can be rewritten,

Xp+1 = (A +BLYy) x;, + Cwy, ®)
= Akxk + Cwy.

2.3. Optimized Tracking

Now, we will further assume that our observation process is
linear in the state of the system of (8), that is

zr = Hxy + Ewy, 9

where wy, ~ N (0,I). We will assume that the last columns
of H are zero, implying that the target of the movement is
not directly observed. Furthermore, let us make the simpli-
fying assumption that the control is optimized over a fam-
ily of potential movements with varying targets centered on
some known average point.

Given (8) and (9), the estimator distribution, (1), is Gaus-
sian distributed, and its mean, the MMSE optimal estimator
for xj, given the observations z.; is a Kalman filter:

Xk+1 = Akfsk + K. (Zk — HX_.{k) s (10)

where one solution for the filter coefficients, K, is the so-
lution to the recursion

Ky = (A,P,H” + CE") (HP,H” + EET) ™'
P = APLAT + CC7 - K, (APH” + CE”)" .

The inversion in the standard form of the recursion given
above renders it vulnerable to numerical instability. As a
result, for the simulations which follow, we used a more
stable “square-root” variant [3].

It is important to keep in mind that the filter we present
is optimal only because it is jointly estimating the target and
the trajectory of the movement. Thus, what is remarkable
about this formulation is that our estimate of the target of

V-354



— Simulated
= Optimal Estimator
--- Naive Estimator

Displacement (cm)
o

0 50 100 150 200 250 300
t(ms)

Fig. 1: A simulated arm trajectory reconstructed using the optimal
joint estimator compared with that achieved by a naive approach.
Model system was identical to the additive noise model of [4].
Observation SNR was ~ 10dB.

a given movement improves in accuracy over the course
of the movement, which in turn increases the accuracy of
the tracking of the instantaneous trajectory. To demonstrate
what we will call the “optimal joint estimator,” we used a
model of human movements to simulate observations of a
controlled linear system, and in the next section present the
results of these simulations under different conditions.

3. SIMULATION RESULTS

For simulation purposes, we used the model of one-dimensional

human reaching movements presented in [4] (except that
the control cost term was decreased from le-5 to 1le-10).
In contrast to Section 2.1, this model further encompasses
feedback-control with signal-dependent noise — we simu-
lated both with and without these assumption-violating en-
hancements. We assumed that the target was chosen from a
Gaussian distribution centered around 10 cm displacement,
with standard deviation 1 cm. A common model for the
activity of neurons in the arm-areas of the motor cortex
has their rate of activation vary linearly with hand veloc-
ity. Thus, the observations are taken as the noise-corrupted
velocity (i.e.,in (9), H=1[0100 0]).

For comparative purposes, let us consider an alternative
approach. A naive observer, ignoring the fact that the sys-
tem under observation was being intelligently controlled,
might also attempt to use a Kalman filter, treating the con-
trol signals as noise, and increasing the noise variance sys-
tem parameter to account for the consequent excess varia-
tion in the system (see, e.g., [5]). Fig. 1 compares a sam-
ple trajectory generated by the model system with recon-
structions from the optimal joint estimator and this naive
approach.

Fig.2 depicts another trajectory reconstruction. The dot-
ted and dashed lines reflect the novel aspect of our tech-
nique. The dotted line is the target of the movement while

— Simulated Trajectory
= Estimated Trajectory
""" Simulated Target

- Estimated Target

Displacement (cm)
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Fig. 2: A simulated arm trajectory reconstructed using the opti-
mal estimator showing the time evolution of the target estimate.
System and observation models as in Fig.1, but with feed-forward
control only.

the dashed line is the estimate of this target. Notice how as
the movement progresses, this estimate transitions from its
initial value, the mean of the target distribution, towards the
correct value.

The relative utility of optimal tracking depends on the
relationship between the quality of the observation process
and the parameters of the system being tracked. Fig.3 de-
picts the relationship between the average observation signal-
to-noise ratio (SNR) and the average accuracy of trajectory
reconstructions (mean-square error of position). Results us-
ing the naive estimator are included for comparison. As
would be expected, as the SNR of the observed signal in-
creases, the performance of the naive and optimal strategies
begin to converge. With medium to low SNR, the optimal
joint estimator begins to perform significantly better than
the naive alternative. As the SNR decreases, the average
error of the optimal approach tends toward the bound corre-
sponding to simply choosing the mean trajectory. Thus, the
actual value of the error bound is determined by the distribu-
tion of targets and the internal system noise. The thickening
lines show that as the internal system noise decreases, the
error bound also decreases. The lowest line shows the er-
ror bound in the case of zero target variation and very low
internal noise.

In Fig. 4 we depict the effect of violations of the model
assumptions. In addition to the pure feed-forward system,
we simulated the actual feedback controlled models from
[4], with either additive or multiplicative internal noise. In-
terestingly, even though the optimal joint estimator assumes
purely feed-forward control, the performance benefits over
the naive method are still quite large under feedback-control
with additive system noise. Even in the case of the full
human-like model with feedback control and multiplicative
noise, if the system model of the optimal joint estimator
is modified by choosing an appropriate value for the noise
term (C in (8)), the performance increase remains signifi-
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Fig. 3: Reconstruction accuracy and SNR. Increasing line widths

correspond to decreasing internal system variation, where the ini-

tial value, Q2, is that specifi ed in [4]. To isolate the effect of in-

ternal system noise, the dashed lines correspond to performance in

the case where the movement target is fi xed at 10 cm.
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cant except at the highest levels of SNR.

4. DISCUSSION

We have presented an approach for tracking controlled dy-
namic systems which is optimal under the conditions pre-
sented. For a model of the human motor system — of par-
ticular interest to us — we have shown in simulation that
even if the system under observation is actually employing
feedback control our estimator can outperform the paradigm
which ignores the controlled aspect of the movements. Fur-
thermore, even when the noise process within the system
is radically different, multiplicative rather than additive, we
found that performance remains excellent. While not pre-
sented here, we have used a similar tracking strategy else-
where [1] to show that if information is present from some
other source regarding the target of the movement — corre-
sponding to the H matrix in (9) having nonzero values in
the final columns — we can use it to further improve the es-
timator accuracy.

We would like to extend this result in two key dimen-
sions. First, to enhance the generality of the joint estimation
approach, we are pursuing an analytical solution for observ-
ing a feedback controlled system. Furthermore, we assumed
a single control for a family of target locations; it would be
better to allow for multiple task- or target- dependent con-
trollers. Though this appears to result in the loss of ana-
Iytical tractability, there is significant potential in various
Monte-Carlo techniques. Secondly, to increase the utility of
this type of optimal estimation in the particular application
of neuroprosthetics, as neural signals are both non-linear
and non-Gaussian distributed, techniques for joint system

-—- Naive Estimator
=== (+feedback)
-------- (+mult. noise)
—— Optimal Estimator
- (+feedback)
=== (+mult. noise)

10° 10
Observation SNR

Fig. 4: Reconstruction accuracy and SNR in simulated systems
where model assumptions are violated. In the case of multiplica-
tive noise, the best parameter choices were highly dependent on
SNR for both the optimal and naive approaches — the lower bounds
are depicted.

model and observation process identification are needed.

In regimes of lower SNR, the optimal joint estimation
strategy becomes quite useful — the trajectories it produces
are orders of magnitude more accurate than those of a more
naive approach. Thus, while the particular application of
neuroprosthetics is a quite interesting and important one,
we are excited that this paradigm may find uses in a wide
range of areas.
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